Substrate binding preferences and pka determinations of a nitrile hydratase model complex: variable solvent coordination to [(bmmp-TASN)Fe]OTf.

نویسندگان

  • Martin G O'Toole
  • Brian Bennett
  • Mark S Mashuta
  • Craig A Grapperhaus
چکیده

The five-coordinate iron-dithiolate complex (N,N'-4,7-bis-(2'-methyl-2'-mercatopropyl)-1-thia-4,7-diazacyclononane)iron(III), [LFe]+, has been isolated as the triflate salt from reaction of the previously reported LFeCl with thallium triflate. Spectroscopic characterization confirms an S = 1/2 ground state in non-coordinating solvents with room temperature microeff = 1.78 microB and electron paramagnetic resonance (EPR) derived g-values of g1 = 2.04, g2 = 2.02 and g3 = 2.01. [LFe]+ binds a variety of coordinating solvents resulting in six-coordinate complexes [LFe-solvent]+. In acetonitrile the low-spin [LFe-NCMe]+ (g1 = 2.27, g2 = 2.18, and g3 = 1.98) is in equilibrium with [LFe]+ with a binding constant of Keq = 4.7 at room temperature. Binding of H2O, DMF, methanol, DMSO, and pyridine to [LFe]+ yields high-spin six-coordinate complexes with EPR spectra that display significant strain in the rhombic zero-field splitting term E/D. Addition of 1 equiv of triflic acid to the previously reported diiron species (LFe)2O results in the formation of [(LFe)2OH]OTf, which has been characterized by X-ray crystallography. The aqueous chemistry of [LFe]+ reveals three distinct species as a function of pH: [LFe-OH2]+, [(LFe)2OH]OTf, and (LFe)2O. The pKa values for [LFe-OH2]+ and [(LFe)2OH]OTf are 5.4 +/- 0.1 and 6.52 +/- 0.05, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of an active site-bound nitrile hydratase intermediate through single turnover stopped-flow spectroscopy.

Stopped-flow kinetic data were obtained for the iron-type nitrile hydratase from Rhodococcus equi TG328-2 (ReNHase) using methacrylonitrile as the substrate. Multiple turnover experiments suggest a three-step kinetic model that allows for the reversible binding of substrate, the presence of an intermediate, and the formation of product. Microscopic rate constants determined from these data are ...

متن کامل

The first example of a nitrile hydratase model complex that reversibly binds nitriles.

Nitrile hydratase (NHase) is an iron-containing metalloenzyme that converts nitriles to amides. The mechanism by which this biochemical reaction occurs is unknown. One mechanism that has been proposed involves nucleophilic attack of an Fe-bound nitrile by water (or hydroxide). Reported herein is a five-coordinate model compound ([Fe(III)(S(2)(Me2)N(3)(Et,Pr))](+)) containing Fe(III) in an envir...

متن کامل

Why is there an "inert" metal center in the active site of nitrile hydratase? Reactivity and ligand dissociation from a five-coordinate Co(III) nitrile hydratase model.

To determine how a substitutionally inert metal can play a catalytic role in the metalloenzyme nitrile hydratase (NHase), a reactive five-coordinate Co(III) thiolate complex ([Co(III)(S(2)(Me2)N(3)(Pr,Pr))](PF(6)) (1)) that resembles the active site of cobalt containing nitrile hydratase (Co NHase) was prepared. This was screened for reactivity, by using low-temperature electronic absorption sp...

متن کامل

How does single oxygen atom addition affect the properties of an Fe-nitrile hydratase analogue? The compensatory role of the unmodified thiolate.

Nitrile hydratase (NHase) is one of a growing number of enzymes shown to contain post-translationally modified cysteine sulfenic acids (Cys-SOH). Cysteine sulfenic acids have been shown to play diverse roles in cellular processes, including transcriptional regulation, signal transduction, and the regulation of oxygen metabolism and oxidative stress responses. The function of the cysteine sulfen...

متن کامل

Toward a computational description of nitrile hydratase: studies of the ground state bonding and spin-dependent energetics of mononuclear, non-heme Fe(III) complexes.

The metal coordination and spin state of the Fe(III) center in nitrile hydratase (NHase) has stimulated the synthesis of model complexes in efforts to understand the reactivity and spectroscopic properties of the enzyme. We report density functional theory (DFT) calculations on a number of Fe(III) complexes that have been prepared as models of the NHase metal center, together with others having...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inorganic chemistry

دوره 48 5  شماره 

صفحات  -

تاریخ انتشار 2009